
EXERCISESET 7, TOPOLOGY IN PHYSICS

• The hand-in exercise is the exercise 2.
• Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
• Deadline is Wednesday April 3, 23.59.
• Please make sure your name and the week number are present in the file name.

Exercise 1: The goal of this exercise is get more familiar with the “global point of view”
on connections. We start out with an abelian example with structure group G = U(1).
Recall that SU(2) ∼= S3 which becomes clear if we parameterize SU(2)-matrices as(

z0 −z̄1

z1 z̄0

)
, z0, z1 ∈ C, |z0|2 + |z1|2 = 1.

The group SU(2) contains U(1) as the diagonal matrices of the form(
eiϕ 0
0 e−iϕ

)
, ϕ ∈ [0, 2π).

We now let U(1) act on SU(2) from the right.

a) Show that the quotient SU(2)/U(1) ∼= S2.
b) Show that the projection of the Maurer–Cartan form of SU(2)

g−1dg =

(
z̄0dz0 + z̄1dz1 −

− −

)
onto the upper-left corner defines a U(1)-connection:

A = z̄0dz0 + z̄1dz1

c) Introduce the coordinates (z, ϕ) on S3 by

z0 = reiϕ

z1 = rzeiϕ r2 =
1

1 + |z|2 .

(Remark that z can be viewed as local coordinate on the quotient.) Show that
the curvature is given by

F = i
dz̄ ∧ dz

(1 + |z|2)2

Evaluate
∫

S2 F, knowing that the area of S2 evaluated w.r.t. to the standard vol-
ume form 2i

(1+|z|2)2 dz ∧ dz̄ is 4π. Compare with Theorem 4.3 of the notes.
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This set-up generalizes if we use the quaternions instead of the complex numbers. Recall
that the quaternions H are just R4 with basis {1, i, j, k}, equipped with multiplication
defined by

i2 = j2 = k2 = −1, ij = −ji = −k, jk = −kj = i, ki = −ik = j.

Notice that this multiplication is not commutative!. We write q = x0 + x1i + x2 j + x3k
for a quaternion v ∈ H, and denote by q̄ = x0 − x1i − x2 j − x3k its conjugate. The
equation

|q|2 := qq̄ = x2
0 + x2

1 + x2
2 + x2

3 = 1,

defining the unit quaternions, then describes the 3-sphere in R4. From now on, we write
u for a unit quaternion.

d) Show that the unit quaternions form a group isomorphic to SU(2).
e) We now form the group G:(

q0 −q̄1

q1 q̄0

)
, q0, q1 ∈H, |q0|2 + |q1|2 = 1,

and SU(2) act from the right via the diagonal embedding(
u 0
0 ū

)
, u a unit quaternion.

Show that the quotient G/SU(2) ∼= S4.
f) Similar computations as in b) show that

A = q̄0dq0 + q̄1dq1

defines an SU(2)-connection. Introduce local coordinates (q, u) on G by

z0 = ρu
z1 = ρqu

ρ2 =
1

1 + |q|2 .

Show that the curvature F = dA + A ∧ A can be written as

uFu−1 =
dq̄ ∧ dq

(1 + |q|2)2

g) The metric on S4 is written in the local coordinate q as

ds2 = r4dq̄dq.

Check that the connection A above is (anti-)selfdual. Compute
∫

Tr(F ∧ F) by
comparing the integrand to the volume form on S4.
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? Exercise 2: The Chern character.

a) Show that the restriction of an invariant symmetric polynomial

P : Matr(C)× . . .×Matr(C)→ C

to the subset diagonalizable matrices, defines a symmetric polynomial1 in r vari-
ables. With this, relate the Chern classes to the elementary symmetric functions

σk(λ1, . . . , λr) := ∑
1≤i1≤...≤ik≤r

λi1 · · · λir , k = 1, . . . , r.

b) It is an algebraic fact that any symmetric polynomial can be written as a linear
sum of products of the σk’s. Show that any characteristic class obtained from the
Chern–Weil formalism can be expressed in terms of Chern classes by using this
fact, the splitting principle and the results of a).

c) Consider the polynomial functions Pk on Matr(C) (r× r-matrices) defined by the
expansion

Tr(etA) = P0(A) + tP1(A) + t2P2(A) + . . . , A ∈ Matr(C).

Show that the Pk are invariant, and therefore define characteristic classes chk(E) ∈
H2k

dR(M) of a vector bundle E → M. Express ch1 and ch2 in terms of Chern
classes. Have you seen ch2 before?

d) The Chern character is defined as the sum

ch(E) := ∑
k≥0

chk(E) ∈ H•dR(M).

Why is this a finite sum? Show that the Chern character satisfies ch(E⊕ F) =

ch(E) + ch(F).

Exercise 3: The Chern Simons form.

a) If you view the trace on matrices as an invariant polynomial via (A, B) 7→
Tr(AB), what is the associated characteristic class?

b) Explain why the characteristic class in a) is, up to a normalization of 4π2, an
integral cohomology class.

c) Suppose that E → M is a trivial vector bundle and let ∇ = d + A be a connec-
tion. Show that the transgression form L(d, d + A) is exactly the Chern–Simons
form Tr(A ∧ dA + 2

3 A ∧ A ∧ A) discussed before.

1A symmetric polynomial is a polynomial function Q of r-variable that is invariant under permutations
of the variables: Q(λ1, . . . , λr) = Q(λτ(1), . . . , λτ(r)), ∀τ ∈ Sr.
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Exercise 4: The Euler Class. In this exercise we will consider oriented real vector bun-
dles (and in the end also complex ones). One way to characterize an orientation on
a real rank n vector bundle π : E → M over the manifold M is to say that relative to
some open cover {Uα} we may pick the transition functions denoted by φαβ : Uαβ →
GL(n, R) to have values in the subgroup SO(n) of GL(n, R). So we will now assume
that φαβ : Uαβ → SO(n), i.e. we will consider oriented vector bundles. This means
in particular that we can choose point-wise linearly independent sections eα,i : Uα →
E|Uα for i = 1, . . . , n for any α such that φαβ(x)j

ieβ,j(x) = eα,i(x) for all x ∈ Uα ∩ Uβ.
Given x ∈ M and any α such that x ∈ Uα we can now consider polar coordinates
(rα, θα,1, . . . , θα,n−1) on Ex\{0} by treating the eα,i as standard coordinates. Note also
that this system of coordinates varies smoothly with x.

i) Show that, if x ∈ Uαβ, then rα(x) = rβ(x).

For simplicity’s sake let us set n = 2 from now on.

ii) Argue that we may pick functions ϕαβ ∈ C∞(Uαβ) such that

θβ = θα + π∗ϕαβ

holds on E|Uαβ
\0(Uαβ) for 0 the zero section.

We note that

dϕαβ − dϕαγ + dϕβγ = 0

on the triple intersections Uαβγ (as a bonus exercise prove this).

iv) Show that there exist one-forms ξα ∈ Ω1(Uα) such that

1
2π

dϕαβ = ξβ − ξα.

HINT: consider 1
2π ∑γ ργ ϕαγ for {ργ} a partition of unity subordinate to {Uγ}.

v) Show that the two-forms dξα define a class e(E) ∈ H2
dR(M) that is independent

of the choice of ξ ′αs.

The class e(E) is called the Euler class of the oriented vector bundle E. Given a rank 1
complex vector bundle V it is given by transition functions φαβ with values in U(1) and
by considering the isomorphism SO(2) ' U(1) given by

eiφ 7→
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
it gives rise to a rank 2 oriented real vector bundle VR.

vii) Show that e(VR) = c1(V).

Finally let us compute such a class. Consider the two-sphere S2 and note that it is
isomorphic to the complex manifold P1. This means that the tangent bundle TS2 = VR

for V a rank 1 complex bundle.
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viii) Show that ∫
S2

e(TS2) = χ(S2)

where χ(M) := ∑∞
i=0(−1)iDim Hi

dR(M) denotes the so-called Euler characteristic.

HINT: Split the integral into a sum of integrals over the north and south hemispheres (keep

orientation in mind). Consider the usual cover of S2 given by UN and US by deleting the south

and north poles respectively. To determine ϕNS consider orthonormal vector fields e1
N , e2

N on UN

and e1
S, e2

S on US for the usual Riemannian metric.
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